Simulating Uniform Hashing in Constant Time and Optimal Space
نویسندگان
چکیده
منابع مشابه
Uniform Hashing in Constant Time and Optimal Space
Many algorithms and data structures employing hashing have been analyzed under the uniform hashing assumption, i.e., the assumption that hash functions behave like truly random functions. Starting with the discovery of universal hash functions, many researchers have studied to what extent this theoretical ideal can be realized by hash functions that do not take up too much space and can be eval...
متن کاملApproximate Range Emptiness in Constant Time and Optimal Space
This paper studies the ε-approximate range emptiness problem, where the task is to represent a set S of n points from {0, . . . , U − 1} and answer emptiness queries of the form “[a; b] ∩ S 6= ∅ ?” with a probability of false positives allowed. This generalizes the functionality of Bloom filters from single point queries to any interval length L. Setting the false positive rate to ε/L and perfo...
متن کاملExact Weighted Minwise Hashing in Constant Time
Weighted minwise hashing (WMH) is one of the fundamental subroutine, required by many celebrated approximation algorithms, commonly adopted in industrial practice for large scale-search and learning. The resource bottleneck of the algorithms is the computation of multiple (typically a few hundreds to thousands) independent hashes of the data. The fastest hashing algorithm is by Ioffe (Ioffe, 20...
متن کاملSimulating space and time
This paper asks if a virtual space-time could appear to those within it as our space-time does to us. A processing grid network is proposed to underlie not just matter and energy, but also space and time. The suggested "screen" for our familiar three dimensional world is a hyper-sphere surface simulated by a grid network. Light and matter then travel, or are transmitted, in the "directions" of ...
متن کاملPractical perfect hashing in nearly optimal space
A hash function is a mapping from a key universe U to a range of integers, i.e., h : U/f0;1, . . . ,m 1g, where m is the range’s size. A perfect hash function for some set SDU is a hash function that is one-to-one on S, where mZ9S9. A minimal perfect hash function for some set SDU is a perfect hash function with a range of minimum size, combines theoretical analysis, practical performance, expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BRICS Report Series
سال: 2002
ISSN: 1601-5355,0909-0878
DOI: 10.7146/brics.v9i27.21743